Influence of Lithium on Growth and Viability of Thyroid Follicular Cells (lithium / FRTL-5 / ³H-thymidine incorporation / ⁵¹Cr release) S. GABERŠČEK¹, M. KALIŠNIK², M. PEZDIRC², K. PAVLIN¹, S. HOJKER¹ ¹Medical Centre Ljubljana, Department for Nuclear Medicine, Ljubljana, Slovenia ²Institute of Histology and Embryology, Medical Faculty in Ljubljana, Slovenia Abstract. Lithium accumulates in the thyroid gland and can cause goiter or thyroid dysfunction. The aims of our work were: 1) to verify whether lithium stimulates proliferation of thyroid cells; as methods, the ³H-thymidine incorporation assay and the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) were used; as a model system the FRTL-5 (Fischer rat thyroid cells in low serum) cell line was selected, 2) to test whether lithium can have a cytotoxic effect on FRTL-5 cells, using the cytotoxicity assay with 51Cr release and the trypan blue exclusion method. Without TSH stimulation, lithium at 0.35-2 mM concentrations significantly increased the ³H-thymidine incorporation. A similar effect was observed in the case of the MTT assay: without TSH stimulation, lithium at 0.4-2 mM concentrations showed a significant stimulation of proliferation. Surprisingly, under TSH stimulation, lithium at the 2 mM concentration significantly inhibited proliferation of FRTL-5 cells. With the cytotoxicity assay, lithium was found to increase ⁵¹Cr release at 1.4–2 mM concentrations. Additionaly, the percentage of viable FRTL-5 cells at 0.35-2 mM concentrations of lithium was lower than in the controls without lithium. In conclusion, lithium was found to stimulate proliferation of FRTL-5 cells in conditions without TSH and, surprisingly, lithium in higher concentrations diminished proliferation of FRTL-5 cells under TSH stimulation. A cytotoxic effect of higher lithium concentrations was observed. Lithium as lithium carbonate has been widely used in treatment and prophylaxis of recidivant bipolar affective disorders in therapeutic concentrations between 0.5 mM and 1.2 mM (Rosenthal and Goodwin, 1982; Schou, 1989; Kallner and Petterson, 1995). Intrathyroid concentrations of lithium can be 2.5–5 times higher than its serum concentrations (Salata and Klein, 1987). Lithium Received November 11, 2001. Accepted May 20, 2002. Corresponding author: Simona Gaberšček, Medical Centre Ljubljana, Department for Nuclear Medicine, Zaloška 7, 1525 Ljubljana, Slovenia. Tel.: +386 1 230 19 71; fax: +386 1 522 2237; e-mail: simona.gaberscek@kclj.si. therapy has been associated with higher incidence of goiter (Schou et al., 1968; Lazarus and Bennie, 1972; Perrild et al., 1990; Boccheta et al., 1996), hypothyroidism (Lindstedt et al., 1977; Leroy et al., 1988; Yassa et al., 1988; Clower, 1989), and, rarely, hyperthyroidism (Rosser, 1976; Barclay et al., 1994). In vivo lithium inhibited iodine uptake, coupling of iodothyrosines, and triiodothyronine of thyroxine and release (Bhattacharyya and Wolff, 1976; Davies and Franklyn, 1991). In vitro lithium increased ³H-thymidine uptake in porcine primary cultures and in FRTL-5 cells (Urabe et al., 1991). Additionally, some cases of lithium-associated thyroiditis have been reported. A cytotoxic effect of lithium has been assumed (Kontozoglou and Mambo, 1983). Presumably, the cytotoxic effect of lithium has not yet been tested in vitro. The first aim of our work was to verify whether lithium had a mitogenic effect. For this purpose we used the ³H-thymidine incorporation assay and the MTT assay. The second aim was to test whether lithium could have a cytotoxic effect on FRTL-5 cells. We used the cytotoxicity assay with ⁵¹Cr release and the trypan blue exclusion assay for cell viability estimation. ### **Material and Methods** Cell culture The experiments were performed using the FRTL-5 cell line (Ambesi-Impiombato et al., 1980). FRTL-5 cells maintain most of the differentiated functions of normal thyroid cells but are unable to organify iodide. FRTL-5 cells were grown in a Coon modified Ham F-12 medium (Sigma Chemical Co., Deisenhofen, Germany) supplemented with 5% calf serum (Gibco BRL, Paisley, UK) and a six-hormone mixture consisting of insulin (10 μ g/ml), transferrin (5 μ g/ml), hydrocortisone (0.36 ng/ml), somatostatin (10 ng/ml), glycyl-L-histidyl-L-lysine acetate (2 ng/ml) and thyrotropin (1 mU/ml), all purchased from Sigma Chemical Co. Cells were grown in a Heraeus-CO₂-auto-zero incubator (Heraues Instruments, Hanau, Germany) in an atmosphere of 5% carbon dioxide and 95% air at 37°C, 100% of humidity. # ³H-thymidine incorporation: growth assay The quantity of 6.7×10^4 FRTL-5 cells were seeded in 24-well plates. They grew for 3 days in the six-hormone medium and, for further 7 days, in the five-hormone medium (medium without TSH). The final volume of the culture medium was 500 µl. The wells were then washed once with the five-hormone medium. Lithium carbonate (Fluka Chemie, Switzerland), dissolved in the five-hormone medium, was added in the following concentrations: 0 mM (controls without lithium), 0.35 mM, 0.7 mM, 1 mM, 1.4 mM, 1.7 mM and 2 mM. The amount of 18.5 kBq of ³H-thymidine (Amersham, Little Chalfont, UK) was added to each well. The plates were incubated for 72 h at 37°C in the incubator. After 72 h, the wells were washed three times with a cold phosphate-buffered saline solution. Then, 1 ml of 5% trichloroacetic acid was added. After 10 min at 4°C, the supernatant was aspirated and 500 µl of diphenylamine solution were added (Valente et al., 1983). The plates were incubated at room temperature for 24 h. From each well, 100 µl of solution were taken for the ³H-thymidine content measurements in a liquid scintillation counter. ### MTT assay The quantity of 1.5 x 10⁴ FRTL-5 cells were seeded in 96-well plates, maintained in the six-hormone medium for 3 days, and in the five-hormone medium for 7 days. The final volume of the culture medium was 100 μl. The wells were then washed once with the five-hormone medium. Cells were stimulated with lithium carbonate in 0 mM (controls), 0.4 mM, 0.8 mM, 1 mM, 1.6 mM and 2 mM concentrations without TSH and with 1 mU/ml of TSH for 3 days. After 3 days, the medium was replaced by the same medium, and MTT (3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Sigma Chemical Co.) solution (25 mg/ml PBS) was added to each well (Sentjurc et al., 1998). Plates were incubated for 3 hours at 37°C. Formazan crystals were dissolved in 100 µl of dimethyl sulphoxide (Sigma Chemical Co.). The plates were shaken and the absorbance of the solution was measured at 570 nm using an Anthos spectrophotometer (Anthos Labtec Instruments, Salzburg, Austria). # ⁵¹Cr release from FRTL-5 cells: cytotoxicity assay The quantity of 7.5×10^4 FRTL-5 cells were seeded in 24-well plates. They grew for 3 days in the six-hormone medium, and for 7 days in the five-hormone medium. The final volume of the culture medium was $500 \,\mu$ l. Then the wells were washed twice with HBSS (Hanks' balanced salt solution). Into each well, HBSS with 5% calf serum and $185 \, \text{kBq}$ of ^{51}Cr in the form of $\text{Na}_2^{51}\text{CrO}_4$ (Amersham) were added. Plates were incubated for $60 \, \text{min}$ at 37°C , and for further $30 \, \text{min}$ at 4°C . Cells were then washed twice with the HBSS. Lithium carbonate, dissolved in the five-hormone medium, was added in the following concentrations: 0 mM (controls without lithium), 0.35 mM, 0.7 mM, 1 mM, 1.4 mM, 1.7 mM and 2 mM without TSH and with 1 mU/ml of TSH. Maximal cell lysis was achieved by incubating cells with the detergent NP 40 (20% solution). The plates were incubated for 24 h at 37°C in the incubator. Aliquots of supernatant were measured in a gamma-counter. The percentage of specific lysis was calculated according to the formula: {[cpm (lithium + medium) - cpm (medium alone)]/[cpm (NP 40) - cpm (medium alone)]} x 100 (Chiovato et al., 1994). ## Trypan blue exclusion method Suspension of FRTL-5 cells in HBSS with different lithium concentrations (0 mM, 0.35 mM, 0.7 mM, 1 mM, 1.4 mM, 1.7 mM and 2 mM) was mixed with a 0.4% solution of trypan blue (Sigma Chemical Co.). Five to fifteen minutes later, coloured (non-viable) and dye-excluding (viable) cells were counted in the Bürker-Türks' chamber. The results were expressed as a percentage of viable cells according to the formula: [number of viable cells (non-coloured)/number of all cells] x 100 (Chiovato et al., 1994). #### **Statistics** The results of experiments are the averages of quadruplicate determinations \pm SD on two occasions and have been statistically analysed using analysis of variance and the t-test. ### **Results** The influence of lithium on ³H-thymidine incorporation into FRTL-5 cells in the absence of TSH stimulation is shown in Figure 1. Lithium at 0.7 mM, 1 mM, 1.4 mM, 1.7 mM and 2 mM concentrations significantly stimulated ³H-thymidine incorporation when compared with the controls without lithium. Fig. 1. Influence of lithium on 3 H-thymidine incorporation into DNA of FRTL-5 cells. Bars represent average values of quadruplicate determinations \pm SD. Significant differences of results compared with controls without lithium are depicted by asterisks (* = P < 0.05).